Statistical Inference in Autoregressive Models with Non-negative Residuals

نویسندگان

چکیده مقاله:

Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also, based on the simulation study, we have compared the ability of some model selection criteria to select the optimal autoregressive model. Then we consider a set of real data, level of lake Huron 1875-1930, as a data set generated from a first order autoregressive model with non-negative residuals and based on the model selection criteria we select the optimal model between the competing models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Spatial autoregressive models for statistical inference from ecological data

Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network-based models (also known as graphical models) specifically designed to model spatially autocorrelated data based on neighborhood relationships. We identify and discuss six different types of practical ecological inferen...

متن کامل

The empirical process of autoregressive residuals

The asymptotic theory of the residual empirical process of autoregressions with an intercept is developed. In contrast to situations without intercept the asymptotic distribution does not depend on the location of the characteristic roots. This is important in applications, as the question of the distribution of the innovations then can be addressed without having to locate the characteristic r...

متن کامل

Statistical Inference in Graphical Models

Graphical models fuse probability theory and graph theory in such a way as to permit efficient representation and computation with probability distributions. They intuitively capture statistical relationships among random variables in a distribution and exploit these relationships to permit tractable algorithms for statistical inference. In recent years, certain types of graphical models, parti...

متن کامل

Non-parametric Statistical Inference

In most statistical problems treated in the literature a datum of the problem is the information that the various distributions of the chance variables involved belong to given families of distribution functions (d.f.'s) completely specified except for one or more parameters. Non-parametric statistical inference is concerned with problems where the d.f.'s are not specified to such an extent, an...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره 1

صفحات  83- 104

تاریخ انتشار 2015-09

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023